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Abstract. For any central potential, it is possible to construct a constant of the motion which 
generalises the Runge-Lenz vector. This is a vector pointing from the centre of force to the 
nearest point of the orbit where r is maximum (or minimum). In general, the direction of 
this ‘constant’ vector thus changes abruptly whenever r is minimum (or maximum). 

It is well known (Runge 1919, Lenz 1924) that a particle of mass m moving in a central 
potential V(r)  = - k / r  has, besides the familiar constants of the motion E and L = r x p,  
another one: 

(1) 
which is a vector parallel to the major axis of the ellipse (or hyperbola). One is naturally 
tempted to generalise this result for an arbitrary V(r ) .  Consider 

M =  ( l /m) (p  x L ) -  k ( r / r )  

M = a ( r ) ( p x L ) + b ( r ) r  (2) 
where a ( r )  and b(r)  are functions to be determined, which may also depend on the 
constants E and L2. To compute k, we use p = -rV’(r) /r  and i = p / m .  In the resulting 
equation, it is convenient to write p x L = p2r - ( r  . p ) p ,  so as to make all the terms of k 
proportional to r or to p. Setting k = 0, we obtain as the coefficient of r ( r .  p ) / r  

alp2 - ma V’ + b’ = 0 

-a’(r.  p ) ’ / r  + ma V’r + b = 0. 

(3) 
and as the coefficient of p 

(4) 
In these equations, we can substitute ( r .  p ) 2  = r2p2 - L2 and p2 = 2m(E - V). Since E 
and L2 are constants of the motion, we have two differential equations for a ( r )  and b(r) .  
It is convenient to multiply equation (3) by r and add the result to (4), thus obtaining 

( 5 )  
which is independent of the potential. It is also convenient to introduce the notation 
Z(r )  = m(E - V )  = p2/2, so that (3) becomes 

2a’Z+aZ’+b’=O. (6) 

Alternatively, we can eliminate b and obtain a second-order equation for a, namely 

a ” ( 2 r ~  - L2/r)  + u ’ ( 4 z  + 3rz’ + L 2 / r 2 )  + a  (22 ’  + r ~ ’ ’ )  = 0. (7) 

(br)’ + a‘L2/r = o 

As 2 is a known function of r, this equation can be continuously integrated unless the 
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coefficient of a” vanishes. The latter is 

( r 2 p 2 - L 2 ) / r  = ( r .  p)’ /r  = m’r(i)’ 

The difficulty now becomes apparent: equation (7) is singular at the turning points of the 
orbit! It is still possible to choose a solution which is regular at one of them, but not at 
both (with some exceptions, such as Kepler orbits where the perihelion, the centre of 
force and the aphelion are collinear). 

The situation is illustrated in figure 1. From 

M = (2aZ + b)r - a p ( p .  r )  (9)  

it is obvious that when p . r = 0, M is parallel to r, provided that a is  finite. In  figure 1, we 
have chosen a solution where a(rmax) is finite, but a(rmin) is not. Thus M points along 
the line connecting the centre of force with the points A, B, C, D .  . . and changes its 
direction abruptly when r is minimum. 

Figure 1. Behaviour of the ‘constant’ vector 
M along the orbit. 

As an example, consider the truncated Kepler potential 

V = - k / r  

V = -k/ro 

r > ro 

r < ro, 

A bound orbit consists of elliptic arcs (for r > ro) connected by straight segments (for 
r < ro). For r > ro, the regular solution is given by equation (1): 

b = -k / r .  - 1  a = m  

For r < ro, we have from equation (6 )  

U ’  = -b’/2Zo (11) 

where Zo = m ( E  + k/ro)  is the constant value of Z ( r )  when r < ro.  Substitution into 
equation ( 5 )  then yields 

b = - ( k / r 0 ) [ ( d  - L’/220)/(r’ - L’/~ZO)]”’ (12) 
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where the constant of integration has been adjusted so that b is continuous at r = ro. 
Likewise 

(13) 
is continuous there. 

We now see how a and b become singular when r2=L2/2Z0 that is when r is 
minimum. Since 2Z0r2 - L2 = p 2 r 2  - L2 = ( p  . r)2,  their singularity behaves as l / lp .  rl. 
The last term in equation (9) then behaves as 

a = m-l- ( b  + k/r0)/2Z0 

p . r / l p . r J = i / l i I  (14) 

which is finite but discontinuous when r is minimum. 

constant for r <ro, by virtue of equation (11). 

time and changes its direction abruptly when r is minimum. 

On the other hand, the first term of equation (9) is continuous because 2aZ + b is 

This example shows explicitly how the vector M remains constant for finite lapses of 
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